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We study the few-electron eigenspectrum of a nanotube quantum dot with spin-orbit coupling. The two-
electron phase diagram as a function of the length of the dot and the applied parallel magnetic field shows clear
signatures of both spin-orbit coupling and electron-electron interaction. Below a certain critical length, ground-
state transitions are correctly predicted by a single-particle picture and are mainly independent of the length of
the dot despite the presence of strong correlations. However, for longer quantum dots the critical magnetic field
strongly decreases with increasing length, which is a pure interaction effect. In fact, the new ground state is
spin and valley polarized, which implies a strong occupation of higher longitudinal modes.
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I. INTRODUCTION

Carbon nanotubes have allowed to realize clean quasi-
one-dimensional electron systems. Experiments revealing
fundamental interaction effects include the detection of
Wigner crystallization1 or Luttinger liquid behavior.2,3 An in-
teresting feature of nanotubes is that the orbital part of low-
lying excitations has an additional spin-like degree of
freedom—the valley index. This new degree of freedom can
cause orbital Kondo effect4 unusual spin configurations5 or a
new type of shell structure6 in nanotube quantum dots.

It was generally assumed that spin and valley degrees of
freedom lead to a fourfold degeneracy of electronic states;
however, recently spin-orbit coupling was observed to split
this degeneracy in two pairs of either parallel and antiparallel
spin and valley orientations.7 Interestingly, the experimental
data could be well explained in a single-particle picture and
correlation effects seemed to be of minor importance. In this
work, we analyze how interaction effects show up in the
two-particle spectrum of a single nanotube quantum dot with
spin-orbit coupling. We argue that the eigenspectrum can be
divided in multiplets of states that have the same orbital
symmetry. Energy gaps within the same multiplet are only
determined by spin-orbit coupling and the orbital Zeeman
effect �and additional small correction due to local interac-
tions� and are therefore captured in a single-particle picture.
However, the extent of correlations can be appreciated by
comparing different multiplets. In particular, we show that
above a certain critical length a tiny magnetic field is enough
to cause a ground-state transition to a spin- and valley-
polarized two-particle state that necessarily involves the oc-
cupation of higher modes.

In the next section, we introduce our model. The quantum
dot is described by a potential well along the nanotube and a
continuum description is applied for the single-particle spec-
trum of electrons localized in this well and subject to a par-
allel magnetic field.8 The single-particle spectrum also in-
cludes the effect of spin-orbit coupling.7,9 We then show how
the electron-electron interaction can be correctly incorpo-
rated in the continuum model.3,10 Thereafter, we present our
results, including a detailed discussion of the phase diagram
of the two-electron ground state as a function of magnetic
field and length of the quantum dot.

II. MODEL

A nanotube is a 1-atom-thick layer of graphite called
graphene wrapped into a seamless cylinder. Depending on
the orientation of the underlying honeycomb lattice of car-
bon atoms with respect to the symmetry axis of the nanotube,
it is either metallic or semiconducting.11 We will study a
semiconducting nanotube with an additional confinement po-
tential along the tube, which is controlled by external gates
and gives rise to a discrete set of localized electronic states.

A. Single-particle spectrum

In a continuum description, the single-particle orbitals
have two components belonging to the two sublattices called
A and B in the following. Furthermore, the single-particle
states have an additional spin-like degree of freedom �
� �1—the valley index—since there are two inequivalent
band minima at the K and K�=−K points of the graphene’s
Brillouin zone.

Using cylindrical coordinates � ,�, the single-particle
Hamiltonian is given by

H0 = − i�vF���x
1

R
�� + �y��� + V��� , �1�

where vF is the Fermi velocity and �x ,�y are Pauli matrices
acting on the sublattice space. We study a square-well poten-
tial, i.e., V��� is zero for ����L /2 and VG otherwise.8 We
assume the potential to be smooth on the atomic length scale
�interatomic distance a0=a /�3=0.142 nm, where a is the
lattice spacing� and therefore neglect confinement-induced
intervalley scattering.

The single-particle solutions are given by

	�
k�r� = �2�R�−1/2ei�Krei
R��k��� , �2�

where k ,
 denote the wave vectors along and around the
tube and the two component longitudinal wave function is
normalized such that �d����Ak����2+ ��Bk����2�=1. �k��� is
given by a standing wave with wave vector k inside the well
and evanescent modes outside the well.8 The corresponding
eigenenergy is given by Ek=�vF

�
2+k2. We note that we
measure energy with respect to the center of the gap, so that
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the dominant part of the single-particle energy is constant
and given by �vF
�220 meV /R	nm
. Electron-electron in-
teraction, however, affects the longitudinal part with a much
smaller level spacing that depending on the length of the dot
is �=2–10 meV.

Both the axial magnetic field B and the spin-orbit cou-
pling modify the transverse wave vector 
,


 = �/R�1/3 + �
/
0 + ��
SO/
0� . �3�

Here � denotes the spin component along the tube, 

=�R2B is the magnetic flux through the tube, 
0=h /e, and

SO�7.2�10−4 determines the curvature-induced spin-orbit
interaction.7,9 The second term in Eq. �3� results from the
coupling between the external magnetic field and the orbital
magnetic moment that is caused by the transverse motion
around the tube.12 Electrons in different valleys have an op-
posite sign of this orbital momentum, which leads to a valley
splitting that is linear in the applied magnetic field. We call
this the orbital Zeeman term in analogy with the smaller spin
Zeeman term HZ=−g�B�B /2 that leads to a spin-dependent
energy shift in the magnetic field. The orbital magnetic mo-
ment is �orb�−�0.5R	nm
 meV /T and the spin magnetic
moment �spin��0.06 meV /T. The third term in Eq. �3� de-
scribes the spin-orbit coupling. It increases �decreases� the
energy in single-particle states with aligned �antialigned�
spin and valley degrees of freedom. The energy splitting is
approximately given by �SO�1.9 /d	nm
meV, where d=2R
denotes the diameter of the tube.7

Spin-orbit coupling and orbital Zeeman effect couple to
the transverse part of the wave function, while their effect on
the longitudinal part �k��� can be neglected for the large dot
sizes we are interested in. The longitudinal wave vector k is
determined by the transcendental equation8,13

tan�kL� =
k̃k

Ek�Ek − VG�/��vF�2 − 
2 , �4�

where k̃= �
2− 	�Ek−VG� /�vF
2�1/2 determines the decay of
the wave function outside the well. Due to the symmetries of
the Hamiltonian in Eq. �1�, �k��� is real and has a well-
defined parity p= �1, �A���= p�B�−��, where A, B label the
two sublattices. The parity of the ith mode �where the ground
state corresponds to i=0� is given by p= �−1�i.

Figure 1 shows the magnetic field dependence of the two
lowest longitudinal modes. Each mode gives rise to four
single-particle states due to the two spin and two valley de-
grees of freedom. At zero magnetic field, these four states are
split in two Kramer doublets �states obtained by flipping si-
multaneously spin and valley degrees of freedom are degen-
erate due to time-reversal symmetry�. Finite magnetic fields
lead to energy shifts linear in magnetic field caused by or-
bital and spin Zeeman splittings. Denoting the single-particle
states by P ,� ,�, a single-particle picture predicts the two-
particle ground state to be �+1,− , ↑ ;+1 ,+ ,↓
 for B�Bcrit
�0.15 T and �+1,− , ↑ ;+1 ,− ,↓
 for B�Bcrit. We note that
only for ridiculously large magnetic fields of about 80 T the
single-particle picture predicts a further ground-state cross-
ing due to an occupation of the first-excited shell �+1,− , ↑ ;
−1 ,− ,↑
.

B. Interaction

The energy gap between different transverse modes is
given by �vF /R�660 meV /R	nm
, which is much larger
than the electron-electron interaction energy between two
electrons, which scales as �vF /L �in Fig. 2, the interaction
energy is about 27 meV�. It is therefore justified to treat
completely filled as well as completely empty transverse
subbands as inert, giving rise to a static screening constant �.
Assuming gate electrodes to be sufficiently far away from
the quantum dot, we use a long-ranged interaction between
the conduction electrons UI�r1 ,r2�=e2 / ���r1−r2��.

The interaction does not depend on the electron spin and
is therefore diagonal in the spin degree of freedom. However,
the local part of the interaction is not diagonal in the valley
degree of freedom.3,10 It is therefore instructive to split the
interaction Hint in a long-ranged part VC and a local onsite
interaction VH.

After integrating out the transverse motion, the interaction
is given by
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FIG. 1. �Color online� Single-particle states for a R=2.5 nm
nanotube with a L=80 nm square well of depth Vg=50 meV.
Color coding: red �solid�: �=−, �=↑, green �long dashed�: �=+1
�=↓, blue �short dashed�: �=−, �=↓, and purple �dotted�: �=+,
�=↑.
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FIG. 2. �Color online� Energies of lowest two-particle states.
Left no interaction, right interaction �=e2 /��vF=1. Parameters as
in Fig. 1. Blue �solid�: parity +1 and red �dashed�: parity −1. Three
states are marked: crosses: �P=1, Tz=0, Sz=0�, filled squares:
�1,−1,0�, and open circles: �1,−1,1�.
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Hint = VC + VH,

VC =
1

2
� d�1d�2V��1 − �2����1����2� ,

VH = VH
�1� + VH

�2�,

VH
�1� = Ũ �

p,�1,�2

� d��p↑�1

† ����p↓�2

† ����p↓�2
����p↑�1

��� ,

VH
�2� = Ũ�

p,�
� d��p↑�

† ����p↓�̄
† ����p↓�����p↑�̄��� .

Here ����=�p���p��
† ����p����� labels the charge density at �,

where p� �A ,B� denotes the sublattice index. The field op-
erators are now expressed by �p�����=�k�pk���a��k where
a��k annihilates an electron in the longitudinal mode k 	char-
acterized by the wave function �k of Eq. �2�
 and with spin �
and valley �. The now one-dimensional interaction V���
=2e2K	4R2 / ��2+4R2�
 / 	����2+4R2�1/2
 can be expressed by
the incomplete elliptical integral of first kind K�x�.14 In the
following, the strength of the long-ranged interaction is
characterized by the effective fine-structure constant �
=e2 /��vF�2.2 /�. The local part depends on Ũ
=UAu / �2�R�, where Au=a2�3 /2 denotes the size of the
graphene’s unit cell in real space and U is the on-site inter-
action. We use U=15 eV.5

Due to the rapidly oscillating Bloch factors ei�Kr of the
eigenfunction �2�, the long-ranged interaction VC is diagonal
in the valley and spin degrees of freedom, and in agreement
with the continuum description, the interatomic distance be-
tween the two sublattices is neglected. The lattice effects not
captured in the continuum model and the long-ranged inter-
action VC are taken into account by the local part of the
interaction VH. We note that VC depends equally on spin and
valley symmetries, but this is not the case for local interac-
tion. For example, spin-aligned electrons do not interact via
VH, but valley aligned do. While local interactions can be
very important for short quantum dots,15 their effect is rather
small for the long quantum dots as shown in the following.
However, also the spin-orbit coupling is a small quantity and,
as we will discuss below, local interaction energies can add
up to the spin-orbit interaction. We note that VH still con-
serves valley polarization �i�i and that it allows for the in-
tervalley exchange interaction �VH

�2��.
The many-body eigenfunctions can be characterized by a

triple of quantum numbers �P ,Sz ,Tz�, where P=�npn
� ��1� denotes the total parity, Sz=1 /2�n�n is the z compo-
nent of the total spin, and Tz=1 /2�n�n is the total valley
polarization; where n=1, . . . ,Ne runs over all electrons. We
note that without local and spin-orbit interaction, the two-
particle states can also be chosen as eigenstates of total spin
S2 and total valley degrees of freedom T2.

In the following, we calculate the eigenspectrum of the
Hamiltonian H=H0+HZ+Hint. The few-electron physics will
be determined by the competition between the single-particle
term H0 that favors the occupation of states according to
their single-particle energy and the interaction term that

wants to maximize the distance between electrons by occu-
pying higher orbitals and by building up correlations. In a
semiconducting nanotube, the relevant single-particle states
will be the localized states in the lowest transverse subband,
and Coulomb correlations in this subspace can be fully taken
into account by diagonalizing the few-electron Hamiltonian.
The symmetries allow to solve the eigenspectrum within
each set of conserved quantum numbers �P ,Tz ,Sz� sepa-
rately. In a metallic nanotube, there is no discrete set of lo-
calized states and the effect of interactions are better de-
scribed in the framework Luttinger liquids.3,10

III. RESULTS

Figure 2 shows the two-particle spectrum as a function of
magnetic field both for noninteracting �left part �=0� and
interacting electrons �right part �=1�. For noninteracting
electrons, the ground state corresponds to a double occupa-
tion of the lowest longitudinal mode and has parity P=+1
�blue states�. Since the spacing � to the next longitudinal
mode is much larger than the spin-orbit splitting, states with
negative parity P=−1 �red states� are energetically well
separated from the ground state for all relevant magnetic
fields. In the following, we label eigenstates by their quan-
tum numbers �P ,Tz ,Sz�. Without magnetic field, the nonde-
generate ground state corresponds to the subspace with
�1,0,0� �blue line with crosses� which is favored by spin-orbit
coupling. At a critical magnetic field, the ground state
crosses to �1,−1,0� �blue line with filled squares� due to the
orbital Zeeman term.

Electron-electron interactions strongly modify the two-
particle energy spectrum and the corresponding eigenstates.
The eigenstates are now given by superpositions of various
slater determinants that can include higher orbital states. As
shown on the right-hand side of Fig. 2, electron-electron in-
teraction strongly reduces the gap between the P=1 and P
=−1 states. At the same time, spin-orbit-induced energy gaps
are unaffected by interactions and also the magnetic field
dependence of the energies is the same as in the noninteract-
ing case. For the parameters chosen in Fig. 2, the ground-
state transition at finite magnetic field occurs to the �−1,
−1,1� state, which is spin and valley polarized �red line with
open circles in Fig. 2�.

We now study the reduction in the energy spacing be-
tween the P=+1 and P=−1 multiplet of states with increas-
ing interactions. Since the magnetic field dependence of the
energies is hardly changed by interactions, it is instructive to
study the spectrum in the absence of magnetic fields. We first
neglect spin-orbit coupling �SO=0 and the on-site interaction
U=0. Figure 3�a� shows the eigenspectrum of H0+VC at B
=0 as function of the interaction strength �. The blue �solid�
line is the sixfold-degenerate P=+1 ground state. Interaction
split the P=−1 states in two sets. The red �long dashed� line
consists of ten states that approach the P=+1 ground state
with increasing interactions. The green �short dashed� line
indicates the remaining six states with P=−1. VC exclusively
acts on the longitudinal part of the wave function since a
single transverse subband is considered. The two-particle
eigenstates can be factorized in longitudinal, spin, and valley
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parts. The longitudinal part of the P=+1 ground state is sym-
metric with respect to the interchange of two electrons. It is
multiplied with either valley triplet and spin singlet or valley
singlet and spin triplet, in order to guarantee the antisymme-
try of the total two-particle wave function. This explains the
sixfold degeneracy. The energetically favored set of P=−1
states is tenfold degenerate and has an antisymmetric orbital
part and spin and valley parts are either both singlet or both
triplet. Figure 3�a� shows that the two-particle ground state
has always a symmetric orbital part for all interaction
strengths; however, the energy gap to the eigenstates with
antisymmetric longitudinal part vanishes with increasing in-
teraction. We note that for scalar eigenfunctions of a
Schrödinger equation, a symmetric orbital part is guaranteed
by the Lieb-Mattis theorem.16 Since we are describing a
semiconducting nanotube with a large gap between trans-
verse modes, we are in fact very close to that limit. With
increasing �, electrons become more and more correlated
and finally form a quasiclassical Wigner crystal, where elec-
trons are localized in different region of space and symmetry
becomes irrelevant.

Including again spin-orbit coupling and local interactions
states with an originally symmetric �antisymmetric� longitu-
dinal part split in multiplets of six �ten� states. This splitting
is small with respect to the total energy, so that Fig. 3�b�
shows the excitation energy �E=Ei�N=2�−E0�N=2� rather
than the total energies. The two-electron ground state, which
belongs to �+1,0 ,0�, therefore defines �E=0 axis. Excita-
tions to P=+1 �P=−1� states are depicted in blue �red�.
Since an increase in the interaction strength � leads to an

increasing distance between the two electrons, the probabil-
ity of finding both on the same site strongly decreases with
increasing � and the local interaction effects vanish. The
energy splitting within the different multiplets therefore
quickly approaches the constant spin-orbit gap with increas-
ing �. Effects of local interactions are, however, visible if the
quantum dot becomes shorter or if � is small �we assume
that local interactions are not screened�. On-site interactions
favor spin-triplet states over spin-singlet states and increase
the energy gap between the �1,0,0� ground state that is in a
superposition of spin singlet and spin triplet and the �1,
−1,0� state 	filled squares in Fig. 3�b�
, which is a spin-
singlet state.

Above a critical magnetic field, a valley-polarized ground
state �Tz=−1� is favored, the parity of which depends on the
ratio of single-particle and interaction energy. This ratio in-
creases for decreasing length of the quantum dot or increas-
ing radius of the nanotube or decreasing dielectric constant �.
The length of the quantum dot is tunable experimentally by
changing gate voltages.

We now discuss the phase diagram of the two-electron
quantum dot as a function of magnetic field B and length L
of the quantum dot, for different spin-orbit couplings �SO
and interaction strengths � as shown in Fig. 4. We note that
the appearance of the spin- and valley-polarized state �green
areas� is favored by the interplay between spin-orbit cou-
pling and long-ranged Coulomb interaction. Figures 4�a� and
4�b� show the phase diagram without spin-orbit coupling.
Then the ground state in zero field is given by the three
spin-polarized states 	among which, the �1,0,0� one is indi-
cated by the blue area in Fig. 4
. They are separated from the
three spin-singlet states of the P=1 multiplet by local inter-
action effects only. At a critical magnetic field, the valley-
polarized state �1,−1,0� �red area in Fig. 4� is favored due to
the orbital Zeeman term. In agreement with our discussion
above, the local interaction is more relevant for shorter quan-
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FIG. 3. �Color online� Dependence of two-electron spectra on
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FIG. 4. �Color online� Two-particle ground state as a function of
magnetic field and length of the nanotube for R=2.5 nm. The
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bers: blue �black�: �1,0,0�, red �dark gray�: �1,−1,0�, and green
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tum dots and for small �. For sufficiently large quantum
dots, the �−1,−1,1� state �green area in Fig. 4� becomes the
ground state since long-ranged Coulomb interaction strongly
suppresses the level spacing between the P=1 and P=−1
states and the remaining gap can be compensated by the gain
in the �spin� Zeeman term.

Figures 4�c� and 4�d� show that the phase diagram drasti-
cally changes if spin-orbit coupling is included. The zero-
field ground state 	still belonging to �1,0,0�
 is now nonde-
generate and is in a superposition of spin singlets and
triplets. Additionally, the regions where the ground state be-
longs to either �1,0,0� or �−1,−1,1� are both considerably
enlarged at the expense of the �1,−1,0� state. Below a criti-
cal length, the magnetic field where the ground-state crossing
	from �1,0,0� to �1,−1,0�
 occurs is mostly length indepen-
dent and coincides with the value predicted by a single-
particle picture.7 In contrast for somewhat larger quantum
dots, the transition occurs to the �−1,−1,1� state and the
corresponding critical magnetic fields decrease continuously
with increasing length of the quantum dot.

In the phase diagrams of the two-particle ground state
with spin-orbit coupling, there is generally a critical length
above which a magnetic field causes a ground-state transition
to the spin- and valley-polarized state. The dependence of
this critical length on � and the radius of the nanotube is
shown in Fig. 5. In agreement with our discussion, this criti-
cal length decreases with increasing interaction strength or
decreasing radius. In the first experimental observation of
spin-orbit coupling in nanotubes,7 the quantum dot was
formed in a semiconducting nanotube of radius R=2.5 nm.
The observed single-particle spacing of �=8 meV and the
charging energy U=19 meV can be obtained in our model
by choosing L=80 nm and �=0.55. For these parameters,
interactions are not strong enough to cause a spin- and
valley-polarized two-particle ground state in agreement with
experiment. However, according to our model, only a slight
increase in the length above L=95 nm should lead to a spin-
and valley-polarized two-electron ground state, and the criti-
cal magnetic field corresponding to the ground-state transi-
tion should then be lower than the one predicted by a single-
particle picture.

A powerful tool to measure the few-electron spectrum of
the quantum dot is transport spectroscopy for different
lengths of the quantum dot. Such an experiment allows one
to measure the energy needed to cause a transition from the
one-electron ground state of energy E0�N=1� to a two-
particle-excited state Ei�N=2� where i denotes the excitation.
Allowed transitions from the one-particle ground state to a
two-particle-excited state cannot change Tz or Sz by more
than �1 /2. These transitions are depicted in Fig. 6. For the
shorter quantum dot, the energy needed for the N=1 to N
=2 ground-state transition exactly follows the first-excited
one-electron energy �except for a constant charging energy�.
This is not the case for the longer quantum dot, where the
two-electron ground-state transition occurs at smaller fields.
We note that excitations between two-particle states of dif-
ferent parity are always modified by interactions and are not
a mere combination of level spacing and spin-orbit gaps.

IV. CONCLUSIONS

We have presented a detailed study of the two-electron
eigenspectrum of a nanotube quantum dot with spin-orbit
coupling. Generally, we find that the eigenstates are strongly
correlated and by varying the length of the quantum dot we
identify clear signatures of short- and long-ranged interac-
tion. In particular, we studied the two-electron phase diagram
as a function of the length of the quantum dot and the ap-
plied magnetic field. While the ground state at zero magnetic
field always corresponds to the same set of quantum numbers
�given by parity P=1, spin Sz=0, and valley polarization
Tz=0� for all lengths, a finite magnetic field causes a transi-
tion to a valley-polarized state which is either a spin singlet
or a spin triplet, depending on the length of the quantum dot.
The former case is the one predicted by a single-particle
picture since valley-polarized electrons in the lowest mode
must be in a spin-singlet state. This crossing is unaltered by
Coulomb interaction since the two crossing states have the
same orbital part and their splitting is only given by the
length-independent orbital Zeeman shift and the spin-orbit
gap �plus small correction due to local interactions�. How-
ever, once the length of the quantum dot exceeds a certain
critical value, interaction effects cause a ground-state transi-
tion to a spin- and valley-polarized state. Increasing the
length even further, the magnetic field of the ground-state
transition becomes arbitrarily small.
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orbit coupling �SO=1.9 meV /d	nm
.
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FIG. 6. �Color online� Energy needed to add a second particle to
the quantum dot. Only transitions that are allowed by spin and
valley selection rules are shown. R=2.5 nm and �=1.
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An interesting continuation of our work is to analyze in-
teraction effects on recently suggested optical manipulation
schemes for the spin in carbon nanotubes.17 Another open
question is whether the presented interaction effects are also
manifest in double quantum dots in nanotubes. In particular,
we suggest to study whether a valley- and spin-polarized
ground state modifies selection rules leading to spin and/or
valley blockade in transport spectroscopy.18

Note added. When this work was about to be submitted,
we became aware of the work of Secchi and Rontani,19 who
obtained similar results for a nanotube quantum dot with
harmonic confinement instead of the potential well used
here. We note that the agreement of general conclusions in

both works shows the robustness of the discussed interaction
effects.
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